
บทที่ 5 กระแสไฟฟ้า
กระแสไฟฟ้า (อังกฤษ: electric current) คือการไหลของประจุไฟฟ้าในวงจรไฟฟ้า อิเล็กตรอนที่เคลื่อนที่ในประจุยังสามารถถูกนำพาโดยไอออนได้เช่นกันในสารอิเล็กโทรไลต์ หรือโดยทั้งไอออนและอิเล็กตรอนเช่นใน พลาสมา กระแสไฟฟ้ามีหน่วยวัด SI เป็น แอมแปร์ ซึ่งเป็นการไหลของประจุไฟฟ้าที่ไหลข้ามพื้นผิวหนึ่งด้วยอัตราหนึ่ง คูลอมบ์ ต่อวินาที กระแสไฟฟ้าสามารถวัดได้โดยใช้ แอมป์มิเตอร์ กระแสไฟฟ้าก่อให้เกิดผลหลายอย่าง เช่น ความร้อน (Joule heating) ซึ่งผลิต แสงสว่าง ในหลอดไฟ และยังก่อให้เกิด สนามแม่เหล็ก อีกด้วย ซึ่งถูกนำมาใช้อย่างแพร่หลายใน มอเตอร์, ตัวเหนี่ยวนำ, และเครื่องกำเนิดไฟฟ้า อนุภาคที่นำพาประจุถูกเรียกว่า พาหะของประจุไฟฟ้า ในโลหะตัวนำไฟฟ้า
อิเล็กตรอนจากแต่ละอะตอมจะยึดเหนี่ยวอยู่กับอะตอมอย่างหลวม ๆ
และพวกมันสามารถเคลื่อนที่ได้อย่างอิสระอยู่ภายในโลหะนั้นภายใต้สภาวะการณ์หนึ่ง
อิเล็กตรอนเหล่านี้เรียกว่า อิเล็กตรอนนำกระแส (อังกฤษ: conduction electron) พวกมันเป็นพาหะของประจุในโลหะตัวนำนั้น กระแสไฟฟ้า (I) เกิดขึ้นจากการไหลของอิเล็กตรอนผ่านวัสดุชนิดหนึ่ง นั่นคือการถ่ายโอนประจุไฟฟ้า อิเล็กตรอนจะเคลื่อนที่ถ้าอยู่ในสนามไฟฟ้าซึ่งสร้างความต่างศักย์ไฟฟ้าระหว่างสองบริเวณ
เพราะฉะนั้นความต่างศักย์ไฟฟ้าจึงจำเป็นในการทำให้เกิดกระแสไฟฟ้า
วงจรไฟฟ้าเป็นวงจรปิด ประกอบด้วยแหล่งกำเนิดกระแสไฟฟ้าและอุปกรณ์อื่น
ๆ ที่ยอมให้กระแสไฟฟ้าไหลผ่าน เครื่องกำเนิดไฟฟ้าแรงสูง สร้างประกายไฟฟ้าขึ้น โดยประกายไฟฟ้าเกิดขึ้นจากโดมตัวใหญ่จะวิ่งเข้าหาทรงกลมอันเล็ก ที่ต่อกับสายดินไว้ ประกายไฟฟ้าจะถูกสร้างขึ้น เมื่อความต่างศักย์ของโดมมากพอที่จะทำให้อากาศโดยรอบเกิดการแตกตัวเป็นอิออน ทำให้อากาศเปลี่ยนจากฉนวนเป็นตัวนำไฟฟ้า
ปรากฏการณ์นี้เกิดขึ้นเร็วมากประมาณ 1 ใน 1000 วินาที ความสามารถในการเคลื่อนที่ของ อิเล็กตรอนในการนำไฟฟ้าจะบอกถึงลักษณะของตัวกลาง ข้อแตกต่างระหว่าง ตัวนำและฉนวนไฟฟ้า คือ จำนวนอิเล็กตรอนอิสระที่ไม่ได้อยู่ภายใต้อิทธิพลของศักย์ไฟฟ้าของนิวเคลียส สัญลักษณ์ตามธรรมเนียมปฏิบัติสำหรับกระแสไฟฟ้าคือ ซึ่งมีต้นกำเนิดมาจากวลีภาษาฝรั่งเศสว่า intensité de courant หมายถึงความเข้มของกระแส (อังกฤษ: current intensity) ความเข้มของกระแสนี้มักจะหมายถึงง่าย ๆ ว่า กระแส[5] สัญลักษณ์ ถูกใช้โดย อ็องเดร-มารี อ็องแปร์ หลังจากที่ชื่อของเขาถูกตั้งให้เป็นหน่วยของกระแสไฟฟ้าในการจัดตั้ง กฏของแอมแปร์ ที่ถูกค้นพบในปี 1820[6]
ชื่อเสียงของเขาเดินทางจากฝรั่งเศสไปยังอังกฤษจนกลายเป็นมาตรฐานที่นั่น
ทั้ง ๆ ที่มีอย่างน้อยหนึ่งสิ่งพิมพ์ที่ไม่ยอมเปลี่ยนจากการใช้ ไปเป็น จนกระทั่งปี 1896[7] การไหลของประจุบวกจะทำให้เกิดกระแสไฟฟ้าเหมือนกันและมีผลเช่นเดียวกันกับกระแสที่เกิดจากประจุลบที่ไหลในทิศทางตรงกันข้าม
เนื่องจากกระแสไฟฟ้าอาจเกิดจากการไหลของประจุบวกหรือประจุลบ
หรือทั้งสองอย่าง
ความเข้าใจในทิศทางการไหลของกระแสจึงขึ้นอยู่ว่าประจุชนิดไหนที่ทำให้เกิดกระแส
ทิศทางของกระแสตามธรรมเนียมปฏิบัติ (อังกฤษ: conventional current) ถูกกำหนดให้เป็นทิศทางของการไหลของประจุบวก[8] ในโลหะที่ใช้ทำสายไฟและตัวนำอื่น ๆ ในวงจรไฟฟ้าส่วนใหญ่
นิวเคลียสของอะตอมจะมีประจุบวกที่จะถูกจับเอาไว้ในตำแหน่งที่คงที่
และมีอิเล็กตรอนที่จะมีอิสระที่จะเคลื่อนที่
ที่สามารถนำพาประจุของพวกมันจากที่หนึ่งไปยังอีกที่หนึ่งได้ ในวัสดุอื่น ๆ
เช่นสารกึ่งตัวนำ
พาหะของประจุสามารถนำพาประจุบวกหรือประจุลบก็ได้ขึ้นอยู่กับสารเจือปน (อังกฤษ: dopant) ที่สารกึ่งตัวนำใช้ พาหะของประจุอาจนำพาทั้งประจุบวกและประจุลบในเวลาเดียวกันก็ได้ เช่นที่เกิดขึ้นใน เซลล์ไฟฟ้าเคมี การไหลของประจุบวกสามารถให้กระแสไฟฟ้าได้เช่นเดียวกันและให้ผลในวงจรไฟฟ้าเป็นการไหลที่เหมือนกับของประจุลบแต่ในทิศทางตรงกันข้าม
เนื่องจากกระแสอาจเป็นการไหลของประจุบวกหรือประจุลบอย่างใดอย่างหนึ่งหรือทั้งสองอย่าง
ธรรมเนียมปฏิบัติจึงเป็นสิ่งจำเป็นสำหรับทิศทางของกระแสไฟฟ้าที่ขึ้นอยู่กับชนิดของ
พาหะของประจุ ทิศทางของกระแสตามธรรมเนียมปฏิบัติ ได้ถูกกำหนดตามอำเภอใจให้เป็นทิศทางเดียวกันกับการไหลของประจุบวก ผลที่ตามมาของธรรมเนียมปฏิบัตินี้ก็คือ
อิเล็กตรอนซึ่งเป็นพาหะของประจุในลวดโลหะและชิ้นส่วนอื่น ๆ
ส่วนใหญ่ของวงจรไฟฟ้า
จะไหลในทิศทางตรงข้ามกับการไหลของกระแสตามธรรมเนียมปฏิบัติ (อังกฤษ: conventional current) ในวงจรไฟฟ้า เนื่องจากกระแสในเส้นลวดหรือส่วนประกอบสามารถไหลไปในทิศทางใดก็ได้ เมื่อตัวแปร
ถูกกำหนดให้เป็นตัวแทนของกระแส
ทิศทางที่เป็นตัวแทนของกระแสบวกจะต้องมีการระบุซึ่งมักจะเป็นลูกศรในวงจรแผนภาพ
นี้เรียกว่าทิศทางอ้างอิงของกระแส ถ้ากระแสไหลในทิศทางตรงกันข้าม ตัวแปร จะมีค่าติดลบ เมื่อทำการวิเคราะห์วงจรไฟฟ้า
ทิศทางที่เกิดขึ้นจริงของกระแสที่ไหลผ่านองค์ประกอบของวงจรเฉพาะมักจะไม่เป็นที่รู้จัก
ผลที่ตามมาก็คือ ทิศทางอ้างอิงของกระแสมักจะถูกกำหนดตามอำเภอใจ
เมื่อวงจรได้รับการแก้ปัญหาแล้ว ค่าลบสำหรับตัวแปรต่าง ๆ
จะหมายความว่าทิศทางที่เกิดขึ้นจริงของกระแสผ่านองค์ประกอบวงจรจะเป็นตรงกันข้ามกับทิศทางอ้างอิงที่ถูกกำหนดไว้ก่อน
ในวงจรอิเล็กทรอนิกส์
ทิศทางกระแสอ้างอิงมักจะถูกกำหนดให้ทุกจุดมีกระแสไหลลงกราวด์
วิธีนี้มักจะสอดคล้องกับทิศทางชองกระแสที่เกิดขึ้นจริง
เพราะในหลายวงจรแรงดันไฟฟ้าจาก แหล่งจ่ายไฟ จะเป็นบวกเมื่อเทียบกับกราวด์ ในวงจรไฟฟ้าใด
ๆ จะประกอบด้วยส่วนสำคัญ 3 ส่วนคือ
แหล่งจ่ายพลังงานไฟฟ้าและตัวต้านทานหรืออุปกรณ์ไฟฟ้าที่จะใส่เข้าไปในวงจรไฟฟ้านั้น
ๆ เพราะฉะนั้น ความสำคัญของวงจรที่จะต้องคำนึงถึงเมื่อมีการต่อวงจรไฟฟ้าใด
ๆ
ก็คือทำอย่างไรจึงจะไม่ให้กระแสไฟฟ้าไหลผ่านเข้าไปในวงจรมากเกินไปซึ่งจะทำให้อุปกรณ์ไฟฟ้าชำรุดเสียหายหรือวงจรไหม้เสียหายได้
เกออร์ค ซีม็อน โอห์ม นักฟิสิกส์ชาวเยอรมันได้ให้ความสำคัญของวงจรไฟฟ้าตามสมการ เมื่อ I เป็นกระแสไฟฟ้า มีหน่วยเป็นแอมแปร์, V คือค่าความต่างศักย์มีหน่วยของโวลต์และ R คือความต้านทานของตัวนำมีหน่วยเป็นโอห์มประกายไฟฟ้า
สภาพการนำไฟฟ้า
สัญลักษณ์
ธรรมเนียมปฏิบัติ


ทิศทางอ้างอิง
กฎของโอห์ม
DC และ AC
กระแสแบ่งออกเป็นกระแสตรง (อังกฤษ: direct current) และกระแสสลับ (อังกฤษ: alternating current)
กระแสตรง

กระแสตรง (DC) คือการไหลทิศทางเดียวของประจุไฟฟ้า กระแสตรงเกิดจากแหล่งที่มาเช่นแบตเตอรี่ เทอร์โมคัปเปิล เซลล์แสงอาทิตย์และเครื่องกำเนิดไฟฟ้ากระแสตรงอื่น ๆ กระแสตรงอาจไหลในตัวนำเช่นลวด แต่ยังสามารถไหลผ่านเซมิคอนดักเตอร์ ฉนวนหรือแม้กระทั่งผ่านสุญญากาศเช่นในลำแสงไอออน ประจุไฟฟ้าไหลในทิศทางที่คงที่แตกต่างไปจากกระแสสลับ (AC) กระแสตรงแทบไม่มีอันตราย ส่วนใหญ่ใช้ในอุปกรณ์อิเล็คโทรนิคส์ขนาดเล็ก ใช้กระแสต่ำ สามารถผลิตได้จากการนำกระแสสลับมาเปลี่ยนเป็นกระแสตรง เช่น ที่ชาร์จโทรศัพท์มือถือ
กระแสสลับ
ในกระแสสลับ (AC) เป็นกระแสไฟฟ้าที่มีทิศทางการไหลของกระแสไฟฟ้ากลับไป-กลับมาอย่างรวดเร็ว เช่นไฟฟ้าที่ใช้ตามบ้านหรืออาคารทั่วไป รูปร่างเป็น sine wave ในบางอย่างอาจเป็นรูปสามเหลี่ยมหรือรูปสี่เหลี่ยม ส่วนใหญ่มีกระแสสูง อันตรายมาก สามารถผลิตจากไฟ DC ได้ แต่ในขนาดเล็ก เช่นเปลี่ยนจากไฟเซลล์แสงอาทิตย์มาเป็น AC เพื่อให้แสงสว่างหรือเปิดทีวีในพื้นที่ห่างไกล ระบบไฟฟ้ากระแสสลับแบ่งออกได้เป็น 2 ระบบ ดังนี้
- ระบบไฟฟ้า 1 เฟส คือระบบไฟฟ้าที่มีสายไฟฟ้าจำนวน 2 เส้น เส้นที่มีไฟเรียกว่าสายไฟ หรือสายเฟส หรือสายไลน์ เขียนแทนด้วยตัวอักษร L (Line) เส้นที่ไม่มีไฟเรียกว่าสายนิวทรอล หรือสายศูนย์ เขียนแทนด้วยตัวอักษร N (Neutral) ทดสอบได้โดยใช้ไขควงวัดไฟ เมื่อใช้ไขควงวัดไฟแตะสายเฟส หรือสายไฟ หรือสายไลน์ หลอดไฟเรืองแสงที่อยู่ภายไขควงจะติด สำหรับสายนิวทรอล หรือสายศูนย์ จะไม่ติด แรงดันไฟฟ้าที่ใช้มีขนาด 220 โวลท์ (Volt) ใช้สำหรับบ้านพักอาศัยทั่วไปที่มีการใช้ไฟฟ้าไม่มากนัก
- ระบบไฟฟ้า 3 เฟส คือระบบไฟฟ้าที่มีสายเส้นไฟจำนวน 3 เส้น และสายนิวทรอล 1 เส้น จึงมีสายรวม 4 เส้น ระบบไฟฟ้า 3 เฟส สามารถต่อใช้งานเป็นระบบไฟฟ้า 1 เฟส ได้ โดยการต่อจากเฟสใดเฟสหนึ่งและสายนิวทรอลอีกเส้นหนึ่ง แรงดันไฟฟ้าระหว่างสายเฟสเส้นใดเส้นหนึ่งกับสายนิวทรอลมีค่า 220 โวลท์ (Volt) และแรงดันไฟฟ้าระหว่างสายเฟสด้วยกันมีค่า 380 โวลท์ (Volt) ระบบนี้จึงเรียกว่าระบบไฟฟ้า 3 เฟส 4 สาย 220/380 โวลท์ (Volt) ระบบนี้มีข้อดีคือสามารถจ่ายกระแสไฟฟ้าได้มากกว่าระบบ 1 เฟส ถึง 3 เท่า จึงเหมาะสมกับสถานที่ที่ต้องการใช้ไฟฟ้ามาก ๆ เช่น อาคารพาณิชย์ โรงงานอุตสาหกรรม เป็นต้น
แม่เหล็กไฟฟ้า

ตามรูป กระแสไฟฟ้าสามารถสร้างสนามแม่เหล็กได้ ในทางกลับกัน ถ้าสนามแม่เหล็กถูกรบกวน ก็สามารถสร้างกระแสไฟฟ้าบนเส้นลวดได้เช่นเดียวกัน
กระแสไฟฟ้าสามารถวัดได้โดยตรงด้วยกัลวาโนมิเตอร์ แต่จะต้องตัดวงจรแล้วแทรกมิเตอร์เข้าไปเป็นส่วนหนึ่งของวงจร ซึ่งไม่สะดวกในการปฏิบัติ ปัจจุบันสามารถวัดได้โดยไม่ต้องตัดวงจรโดยการตรวจสอบสนามแม่เหล็กที่เกิดจากกระแสไฟฟ้า อุปกรณ์ที่ใช้สำหรับการนี้รวมถึงเซ็นเซอร์แบบฮอลล์เอฟเฟค หรือใช้ที่หนีบ (current clamp) หรือใช้หม้อแปลงกระแส หรือใช้ขดลวดของ Rogowski
นิยามของกระแสไฟฟ้า
กระแสไฟฟ้าคือ ปริมาณประจุไฟฟ้าที่เลื่อนไหลในวงจรไฟฟ้าต่อหน่วยวินาที เรียกว่า ปริมาณกระแสไฟฟ้าไหล แอมแปร์ คือประจุไฟฟ้า 1 คูลอมบ์ เคลื่อนที่ผ่านพื้นที่หน้าตัดของขดลวดในเวลา 1 วินาที และหน่วยของกระแสไฟฟ้าเป็นแอมแปร์ เพื่อให้เป็นเกียรติแก่ อ็องเดร-มารี อ็องแปร์ (อังกฤษ: Andre Marie Ampere) นักฟิสิกส์ชาวฝรั่งเศส
ความสัมพันธ์ระหว่างกระแสไฟฟ้า กับประจุไฟฟ้า
สัญลักษณ์ที่ใช้แทนปริมาณกระแสไฟฟ้า (ปริมาณประจุไฟฟ้า Q ที่ไหลต่อหน่วยเวลา T) คือ I ปริมาณกระแสไฟฟ้าที่ผ่านพื้นที่ภาคตัดขวางใด ๆ (เช่น ภาคตัดขวางในลวดทองแดง) นิยามจาก ปริมาณประจุไฟฟ้าที่ผ่านพื้นที่ผิวในหน่วยเวลา[9]
โดยที่ เป็นปริมาณประจุที่ผ่านพื้นที่ผิวหนึ่งในช่วงเวลา ในสมการข้างบนเป็นค่า กระแสไฟฟ้าเฉลี่ย ถ้าเวลา เข้าใกล้ศูนย์ สามารถเขียนความสัมพันธ์อีกแบบในรูป กระแสไฟฟ้าขณะใดขณะหนึ่ง (instantaneous current)
- หรือผันกลับได้
หน่วยของกระแสไฟฟ้าในระบบ SI คือ แอมแปร์ (ampere, A)